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a b s t r a c t

A new procedure for generating smooth uniformly clustered three-dimensional structured
elliptic grids is presented here which formulates three-dimensional boundary constraints
by extending the two-dimensional counterpart1 presented by the author earlier. This fully
automatic procedure obviates the need for manual specification of decay parameters over
the six bounding surfaces of a given volume grid. The procedure has been demonstrated
here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy, as
well as the Inflatable Aerodynamic Decelerator (IAD) geometry and a 3D analytically
defined geometry. The new procedure also enables generation of single-block grids for such
geometries because the automatic boundary constraints permit the decay parameters to
evolve as part of the solution to the elliptic grid system of equations. These decay param-
eters are no longer just constants, as specified in the conventional approach, but functions
of generalized coordinate variables over a given bounding surface. Since these decay func-
tions vary over a given boundary, orthogonal grids around any arbitrary simply-connected
boundary can be clustered automatically without having to break up the boundaries and
the corresponding interior or exterior domains into various blocks for grid generation.
The new boundary constraints are not limited to the simply-connected regions only, but
can also be formulated around multiply-connected and isolated regions in the interior.
The proposed method is superior to other methods of grid generation such as algebraic
and hyperbolic techniques in that the grids obtained here are C2 continuous, whereas sim-
ple elliptic smoothing of algebraic or hyperbolic grids to enforce C2 continuity destroys the
grid clustering near the boundaries.

Published by Elsevier Inc.
1. Introduction

A smooth and orthogonal grid around arbitrary geometries is invariably generated using grid generation techniques based
on the solution of partial differential equations. One such powerful technique is based on the solution of elliptic partial dif-
ferential equations [1–9]. Elliptic grid generation methods are generally used to create C2 smooth grids on which accurate
numerical solutions [10] to a given physical problem are obtained. This grid generation procedure involves the numerical
solution of inhomogeneous elliptic partial differential equations [1–9]. The inclusion of inhomogeneous terms in these equa-
tions allows a grid to satisfy clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions
and in the vicinity of specific lines in two dimensions. Although the prediction of quantities such as pressure in a given CFD
simulation can be reasonably obtained by other grid generation methods also, elliptic grids yield more accurate predictions
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Nomenclature

x,y,z Cartesian coordinates
n,g,f generalized curvilinear coordinates
J = J((x,y,z)/(n,g,f)) Jacobian of transformation
bi(g,f),di(n,f), fi(n,g) respective decay parameter functions for the n,g,f boundaries, calculated automatically
i index for a particular boundary component
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of higher order quantities such as skin friction and heat transfer, as compared with other grid generation techniques [10].
This is because the elliptic grids satisfy the C2 continuity requirement that permits accurate prediction of these higher order
quantities. For example, the need to determine the heat transfer accurately in a CFD simulation over a re-entry space vehicle
such as the space shuttle is critical in ensuring the health of the vehicle during re-entry. For this reason, elliptic grids are
being generated, for example, inside the cavities over the shuttle’s outer surface created by impacts or other damage result-
ing in the loss or damage of a given tile. Although grids created by algebraic or hyperbolic techniques can be smoothed by
elliptic smoothing to ensure the C2 continuity of the grid, the near-boundary clustering of the grid gets destroyed in this pro-
cess, resulting in poor heat transfer prediction.

Many other elliptic grid generation methods have been reported in the literature [11–19]. For example, in the method of
Azarenok [11], use of elliptic functional is made to enforce grid orthogonality and clustering close to the boundary.

In the elliptic grid generation techniques presented earlier [3–5], the free parameters used in the inhomogeneous term
that control the clustering and the orthogonality of the grid near boundaries were specified externally. This requirement
was alleviated partially by a later study [6], where the near-boundary orthogonality was satisfied automatically, without
the need for external specification of the associated free parameters. But, the other parameters, called the decay parameters,
that control the rate of clustering near a boundary, still needed to be prescribed. The author in his 2D study [8], proposed an
automatic procedure that obviated the need for the external specification of these decay parameters. In this 2D study [8],
these decay parameters were no longer the prescribed constants, but functions of a single generalized coordinate variable,
say, g, over a given generalized coordinate boundary, say f = constant. Thus the elliptic grid generation procedure was fully
automatic, without any external parameter specification, and the rate of clustering over a given boundary was adaptable,
from point to point. In the present study, this methodology [8] has been extended to three dimensions so that the orthog-
onality and the rate of clustering in, e.g. n direction are free to adapt from point to point over a given (g,f) surface.

2. Formulation

Two-dimensional form of the inhomogeneous elliptic partial differential equations (pdes) for grid generation used by
Thompson et al. [3–5] contained four explicit parameters that need to be prescribed by the user. Later, Steger and Sorenson
[6] prescribed a semi-automatic scheme that reduced the requirement for explicit prescription of these parameters to the
two parameters, called decay parameters. In a subsequent study [8], the author further enhanced this methodology to fully
automate the elliptic grid generation process that completely eliminated the need for the explicit user prescription of decay
parameters.

Additionally, in the enhanced fully automated methodology of Kaul [8], the decay parameters are no longer a specified set
of constants chosen manually for the four boundaries for two-dimensional applications, but four decay functions, each a
function of one independent coordinate variable over a given boundary, which are calculated as part of the solution process.
This feature makes it possible to cluster a grid normal to any arbitrarily shaped boundary.

Below, a three-dimensional analog of the earlier two-dimensional methodology [3–5] is given. Then, the development of
the semi-automatic [6] and the enhanced fully automated [8] methodologies is briefly discussed. Finally, the extension of the
fully automated methodology [8] for two-dimensions is extended to three-dimensional applications.

Three-dimensional governing equations for elliptic grid generation are expressed as:
nxx þ nyy þ nzz ¼ Pðn;g; fÞ ¼ �ai � sgnðn� niÞ expf�bijn� nijg; ð1Þ
gxx þ gyy þ gzz ¼ Qðn;g; fÞ ¼ �ci � sgnðg� giÞ expf�dijg� gijg; ð2Þ
fxx þ fyy þ fzz ¼ Rðn;g; fÞ ¼ �ei � sgnðf� fiÞ expf�fijf� fijg; ð3Þ
where n, g and f are generalized curvilinear coordinates, x, y and z are Cartesian coordinates, and P(n,g,f), Q(n,g,f) and
R(n,g,f), are inhomogeneous terms; ai, bi, ci, di, ei and fi are manually selected constants, and the subscript ‘‘i” refers to a par-
ticular boundary component associated with the problem.

A simplified two-dimensional form of Eqs. (1)–(3) is written as [6]
nxx þ nyy ¼ �a�isgnðg� giÞ expf�dijg� gijg; ð4Þ
gxx þ gyy ¼ �c�isgnðg� giÞ expf�dijg� gijg: ð5Þ
Eqs. (4) and (5) were used [6] to semi-automatically generate the two-dimensional grids with appropriate clustering and
orthogonality at the walls. The functions, a and c, are obtained by satisfying the orthogonality constraint and a prescribed
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spacing requirement at a given g boundary, as shown [6]. But, the decay parameter, di, was prescribed manually, for the
boundary, gi.

As mentioned above, a fully automatic boundary procedure was proposed [8] to eliminate the need for manual selection
of the decay parameters for each boundary. Also, these decay functions, no longer constants, but functions of the indepen-
dent coordinate variables along a given boundary, were calculated as part of the solution process. This fully automatic
boundary procedure has been used successfully for various two-dimensional complex geometries [8].

In this paper, extension of this 2D automatic procedure to three-dimensional applications is presented. Geometries cho-
sen here are those for the MSL aeroshell and canopy, as well as the geometry for a tension cone IAD. These geometries are
being used to study planetary re-entry flows of Entry, Descent and Landing (EDL) systems. The present procedure makes it
possible to generate single-block grids for these geometries. Another 3D geometry, analytically defined, is also used to dem-
onstrate the present procedure.

Using the fully automated approach [8], for a given boundary, fi (f > fi), for example, Eqs. (1)–(3) are modified here in the
context of Eqs. (4) and (5) and are written in the following form:
nxx þ nyy þ nzz ¼ p3ðn;g; fÞ; ð6Þ
where, p3ðn;g; fÞ ¼ �a3;iðn;gÞsgnðf� fiÞ expf�fiðn;gÞjf� fijg � �a3;iðn;gÞ þ a3;iðn;gÞfiðn;gÞjf� fij
� �

sgnðf� fiÞ
gxx þ gyy þ gzz ¼ q3ðn;g; fÞ; ð7Þ
where, q3ðn;g; fÞ ¼ �c3;iðn;gÞsgnðf� fiÞ expf�fiðn;gÞjf� fijg � �c3;iðn;gÞ þ c3;iðn;gÞfiðn;gÞjf� fij
� �

sgnðf� fiÞ
fxx þ fyy þ fzz ¼ r3ðn;g; fÞ; ð8Þ
where,
r3ðn;g; fÞ ¼ �e3;iðn;gÞsgnðf� fiÞ expf�fiðn;gÞjf� fijg;� �e3;iðn;gÞ þ e3;iðn;gÞfiðn;gÞjf� fij
� �

sgnðf� fiÞ
and, where an, i = an, i(n,g), cn, i = cn, i(n,g) and en, i = en, i(n,g), and where n = 3 corresponds to the f boundary, under
consideration.

Similar expressions hold for the inhomogeneous terms for the n (n = 1) and g (n = 2) boundaries.
It is worth noting here that, for example, the expression for p3 in Eq. (6) is guaranteed to yield the maximum and min-

imum values at the corresponding fi boundaries. As an example, for f > fi, p3 acts as a source term and for f < fi, p3 acts as a
sink term, thus ensuring the minimum and maximum values at the corresponding boundaries respectively.

The positive decay parameters, bi, di and fi, for the corresponding boundaries, n, g and f, respectively, are expressed as
parameter functions, bi(g,f), di(n,f) and fi(n,g) in the present approach, and the corresponding terms, a2, i(n,f), c2, i(n,f),
e2, i(n,f) and a1, i(g,f), c1, i(g,f), e1, i(g,f), hold for g and n boundaries respectively.

Without loss of generality, one can consider the neighborhood of a given f-boundary segment i, f � fi P 0. It can be shown
that in a selected region on one side of this boundary segment, where fi(n,g)(f � fi)� 1, the governing equations and the
inhomogeneous terms have the limiting forms similar to those given in [8].

Treatment of a boundary segment, (f � fi) < 0, is analogous. Similar pdes hold for regions close to n-boundary and g-
boundary segments.

Rewriting, the limiting governing equations near a f boundary become [8]
nxx þ nyy þ nzz � a3;iðn;gÞfiðn;gÞjf� fijsgnðf� fiÞ ¼ �a3;iðn;gÞsgnðf� fiÞ;
gxx þ gyy þ gzz � c3;iðn;gÞfiðn;gÞjf� fijsgnðf� fiÞ ¼ �c3;iðn;gÞsgnðf� fiÞ;
fxx þ fyy þ fzz � e3;iðn;gÞfiðn;gÞjf� fijsgnðf� fiÞ ¼ �e3;iðn;gÞsgnðf� fiÞ:
It can be easily seen that the pdes above represent a self-adjoint operator of the form:
LðhÞ ¼ divðk gradðhÞÞ � qh
and, therefore, boundary constraints, valid in the neighborhood of each of the six boundary segments, are incorporated by
applying the Green’s theorem in three dimensions. For example, for the f boundary, the constraint will be given by
Z

S
ð@h=@nÞdr ¼

Z
V
f�e3;iðn;gÞ þ e3;iðn;gÞfiðn;gÞjhjgsgnðhÞds; ð9Þ
where h = f � fi, dr is a differential area element, ds is a differential volume element, k is identically equal to 1 and n refers to
a direction that is locally normal to a bounding surface S representing a totality of six surfaces including the boundary seg-
ments of interest and V is a volume enclosed by S. This integral-type boundary constraint can be used to calculate the decay
parameter analog, e3, i(n,g)fi(n,g). Similar constraints can be used to calculate the decay parameter analogs, a1, i(g,f)bi(g,f)
and c2, i(g,f)di(n,f). The essence of the present technique lies in the integral constraint (9), which is based on the Green’s The-
orem as applied to self-adjoint operators shown above. The integral constraint (9) allows the functions b, d and f to be cal-
culated automatically as part of the solution. Thus, the present technique is fully automatic as opposed to the ‘‘semi-
automatic” technique [6]. While it is true that all the parameters are automatically calculated as part of the solution, the
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control over the rate of stretching and the boundary grid spacing are maintained by the present method, according to the
given grid distribution, specified as an initial condition for the method. It is the initial prescription of the starting grid that
drives the decay parameters to attain values consistent with the initially prescribed spacing and stretching rate. When Neu-
mann boundary conditions are prescribed along a given boundary, the boundary points on that boundary are then free to
slide. But, the normal grid spacing on a given boundary is fixed by the initial prescription.

The novelty of the present method is actually twofold: (i) the solutions have been obtained automatically without the
user prescribing the decay parameter functions, b, d and f, which is the major advantage of the present technique over
the classical approach, and (ii) the nonlinear inhomogeneous term has been linearized that ensures convergence to the
smooth solution. The novelties as mentioned in (i) and (ii) above are not mutually exclusive since the linearization of the
homogeneous terms makes it possible to express the governing equations in the self-adjoint operator form, as shown above.

As pointed out by Kaul [8], the physical analogy in 2D does not extend to 3D, since the 2D physical analogy of the limiting
form of governing equations shown above holds for heat transfer over long thin fins (US patent 7231329). In the context of
grid clustering, the reader is referred to a discussion of the classical approach [5] based on differential geometry.

When expressed in terms of the generalized coordinate, f, the boundary constraint given in Eq. (9) is transformed as
follows:
Z
S

I dr ¼
Z

S
ð@h=@nÞdr ¼

Z
S
ð@f=@nÞdr: ð10Þ
The integral
R

S I dr in Eq. (10) can be written as an algebraic sum of six integrals, evaluated over the indicated boundary
segments:
Z
S

I dr ¼
Z

n max
I drþ

Z
g max

I drþ
Z

f max
I dr�

Z
n min

I dr�
Z

g min
I dr�

Z
f min

I dr; ð11Þ
where the surface configurations n max; n min, etc. represent the corresponding boundary segments that together make up
the surface S. For the first and fourth integral pair, the second and fifth integral pair, and the third and sixth integral pair in
Eq. (11), the following respective relations are derived:
Z
n

I dr ¼
Z

n
ð1=J
p

a11Þa13 x2
g þ y2

g þ z2
g

� �
x2

f þ y2
f þ z2

f

� �h i1=2
dfdg; ð12Þ

Z
g

I dr ¼
Z

g
ð1=J
p

a22Þa23 x2
n þ y2

n þ z2
n

� �
x2

f þ y2
f þ z2

f

� �� �1=2
dndf; ð13Þ

Z
f

I dr ¼
Z

f
ð1=JÞ a33 x2

g þ y2
g þ z2

g

� �
x2

n þ y2
n þ z2

n

� �h i1=2
dgdn; ð14Þ
a11 ¼ J2 n2
x þ n2

y þ n2
z

� �
;

a22 ¼ J2 g2
x þ g2

y þ g2
z

� �
;

a33 ¼ J2 f2
x þ f2

y þ f2
z

� �
;

a12 ¼ J2 nxgx þ nygy þ nzgz

� �
;

a13 ¼ J2 nxfx þ nyfy þ nzfz

� �
;

a23 ¼ J2 gxfx þ gyfy þ gzfz

� �
;

where J = J((x,y,z)/(n,g,f)) is a Jacobian of the transformation (x,y,z) ? (n,g,f).
The Eqs. (12)–(14), for the three integral pairs, are valid for the corresponding n,g,f surfaces defining the bounding box for

determination of clustering near the given f = constant surface. The functions, a, c and e are automatically obtained by sat-
isfying the orthogonality and prescribed spacing requirements at a given f boundary, just as a and c are obtained for the 2D
case in Ref. [6] for a given g boundary (see Eqs. (4) and (5) above). Then, the constraint given by Eq. (9), in conjunction with
Eqs. (12)–(14), automatically gives the function f, for the given f boundary. In the classical approach, the user defined param-
eter d, e.g. for the 2D case, is thought of as the decay parameter, but as seen by the heat transfer analogy in 2D [8], it is the
products of a and f, c and f, e and f, in the 3D case, that define the decay rate from the given fi boundary and hence these
products are referred to as the decay parameter analogs. The boundary grid spacing normal to all the six boundaries is con-
trolled by the grid spacings, prescribed initially.

Again, as pointed out earlier, these decay parameters are no longer user specified constants, as in the conventional meth-
ods, but functions of two independent coordinate variables over a given surface normal to which the clustering is required.
Another notable point is that since the inhomogeneous terms are now linearized, the method is robust and relatively insen-
sitive to the grid distribution as in the conventional method.
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Eqs. (12)–(14) can be used to express the boundary constraints in the computational space (generalized coordinate vari-
ables). The following governing equations in computational space are solved, subject to the boundary constraints derived
above:
a11xi;nn þ a22xi;gg þ a33xi;ff þ 2fa12xi;ng þ a13xi;nf þ a23xi;gfg ¼ �J2fp3xi;n þ q3xi;g þ r3xi;fg;
xi ¼ x; y or z:
Fig. 1. Grid over the MSL aeroshell geometry.

Fig. 2. Cross-section of the elliptic grid around the MSL aeroshell; outer boundary is far-field.
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A decay parameter analog, such as e3, i(n,g)fi(n,g), may vary with one or more of the generalized coordinates, (n,g), rather
than being constant, and this variation is determined as part of the solution of the elliptic grid problem, rather than being
prescribed initially by the user. This grid solution can be determined for either a static grid or a dynamically changing grid.
Hence, dynamically changing grids can be generated automatically without the user intervention.

The preceding analysis has focused on the neighborhoods of the grid boundary segments. As noted in the preceding, in an
interior region, far from the grid boundary segments, the defining partial differential equations become homogeneous, and
an orthogonal and uniform grid cell distribution is obtained which smoothly transitions from the interior to the boundaries.
3. Numerical approach and boundary conditions

The numerical approach used to solve the elliptic problem is a successive line relaxation method in which, as the initially
specified clustering rate near the boundary is increased, the relaxation parameter needs to be decreased. This experiment is
very simple and fast. Once the functional relationship between the relaxation parameters and the clustering rate is deter-
mined, the technique is relatively insensitive to any other effects including those of the normal grid spacing at the bound-
aries. In the author’s experience, as long as the initial grid is reasonably prescribed in a non-degenerate manner, the present
procedure invariably leads to an acceptable solution with the orthogonality and, especially, clustering requirements fulfilled.
This is because the nonlinear inhomogeneous terms are linearized in the present case which ensure a relatively smooth
convergence to the desired solution.
Fig. 3. Cross-section of the elliptic grid around the MSL aeroshell and the wind-tunnel wall.
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In the numerical scheme, all the first order and second order spatial derivative terms are central-differenced and hence
are second order accurate, including those used in the boundary constraints. The tridiagonal system of discretized equations
obtained thus is inverted using the Thomas algorithm in a given coordinate direction. For further details of the numerical
method used, the reader is referred [6,8].

There is a choice between the Dirichlet and Neumann type boundary conditions. Typically, in a given direction, where grid
points are allowed to slide, Neumann boundary conditions are used, and Dirichlet boundary conditions are used in the other
direction(s).

4. Results

Some key elements of the enhanced elliptic grid generation methodology are demonstrated through a few selected com-
putational grid generation examples. The geometries for planetary EDL systems, such as an aeroshell and a canopy for the
Mars Science Laboratory (MSL), as well as the tension cone IAD, are considered here. In subsequent computational fluid
dynamics studies, a direct comparison with experimental data will be made for these and other geometries. There are
currently some parallel experimental studies [20–22] being carried out on similar geometries. For the MSL and the IAD
geometries, single-block grids are generated with the present grid generation procedure which are uniformly clustered at
the body. Also, as mentioned earlier, the present methodology is demonstrated for an analytically defined 3D geometry. With
the conventional elliptic grid generation methodology, as mentioned above, decay parameters are prescribed by the user as
constants over a given boundary. If the boundary slope is discontinuous, then this prescription fails to generate uniformly
clustered grids around sharp corners and high curvature regions. To avoid this problem encountered in the conventional ap-
proach, grids are typically decomposed into multiple blocks and the grids are generated separately for these blocks.

In the present methodology, decay parameters are automatically calculated as decay functions, as part of the solution.
Thus, a uniformly clustered grid is generated over an arbitrarily shaped boundary as a single-block grid, as long as the bound-
ary is simply-connected. The grid over the MSL aeroshell geometry, shown in Fig. 1, is generated as a single-block
51 � 72 � 61 grid; 72 points in the meridional direction, 51 points in the streamwise direction and 61 points in the direction
normal to the body. An axisymmetric cross-section, 51 � 61, of the volume grid around the aeroshell is shown in Fig. 2. This
grid is shown to be clustered at the aeroshell wall. Away from the aeroshell, the grid uniformly stretches to the far-field
boundary. No clustering requirement is enforced at the far-field boundary. A note of caution should be made here regarding
realizing strict orthogonality of the grid lines at the surface. Theoretically, it is a matter of carrying the iterations indefinitely
to make the grid orthogonal in the limit. However, in practice, strict orthogonality will not be achieved, since that is a func-
tion of how stretched or clustered the grid is at the boundaries. The higher the rate of clustering at the boundary, the higher
the degree of orthogonality at the boundary. This has to do with the assumption made in the linearization of the inhomo-
geneous terms, where, as the clustering rate increases, the decay parameter decreases, and hence the linearization approx-
imation of the exponent term becomes more accurate. In this context, for example, Visbal and Knight [16] have observed that
the strictly orthogonal grids can be generated with a partial control of the mesh spacing and nearly orthogonal grid with
strict control of the mesh spacing. In the author’s experience, with the Neumann boundary conditions, the grids generated
near the boundaries are strictly orthogonal at those boundaries, but with Dirichlet boundary conditions they are not always
strictly orthogonal.
Fig. 4. A representative aeroshell grid calculated with the standard technique (user-specified decay parameter constants).
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Fig. 3(a) and (b) shows the elliptic grid around the aeroshell bounded by a tunnel wall. Therefore, the grid is clustered at
both the aeroshell and tunnel walls. Again, as noted earlier, the degree of orthogonality at the tunnel walls is not strictly
enforced.

A representative calculation is made with the standard technique [5,6] with arbitrarily chosen values for the decay
parameter. In this case, the grid clustering fails at the tunnel walls and actually leads to an erroneous solution at the corners.
This is shown in Fig. 4. With the decay parameter constants thus specified by the user, in this case, the clustering is not uni-
form and fails to resolve the corners. The clear advantage of the present technique lies in the automatic calculation of the
decay parameter functions that enables uniform clustering around any simply-connected domain with discontinuous slopes.

Convergence history for the present method and that for the standard method are shown in Fig. 5(a) and (b). A smooth
convergence is exhibited by the present fully automatic method in Fig. 5(a). The final grid corresponding to this calculation is
shown in Fig. 3, as discussed above. Fig. 5(b) shows the corresponding convergence history for the standard method [5,6]
where iterations eventually diverge, with the Jacobians becoming negative. Corresponding grid, just before the calculations
blow up, is shown in Fig. 4 above.
Fig. 6. A three-dimensional slice of the grid in the vicinity of the aeroshell.

Fig. 5. Convergence history.
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A three-dimensional slice through the volume grid obtained with the present method including the aeroshell surface is
shown in Fig. 6.

Fig. 7(a)–(d) shows a single-block 91 � 72 � 67 grid for the tension cone IAD; Fig. 7(b)–(d) show progressively enlarged
views of the IAD grid near the body.

One of the key elements of the new fully automatic elliptic grid generation procedure is that since the decay function
varies over a given body surface, it can automatically resolve the curvature of the surface in accordance with the clustering
requirement. It is clearly not possible to prescribe such a decay function manually that is required with the conventional
elliptic grid generation schemes.

As shown in Fig. 7(c) and (d), although the grid is not orthogonal near the boundary, the nondegeneracy of the grid is
ensured here indirectly in the sense that only the non-degenerate solutions will converge in the present method. An example
of nondegeneracy is that Jacobians become negative. But, in a two-dimensional problem, the boundary constraints will phys-
ically yield the correct solution to the long thin fin heat transfer problem near a boundary, and hence a non-degenerate solu-
tion to the grid problem is guaranteed in the 2D case. The author has not yet identified any known physical principle on
which the 3D grid problem is based, and hence nondegeneracy is not known to be guaranteed. But, in practice, a converged
solution always yields a non-degenerate solution with the present method, as long as the initial grid is not degenerate. For a
Fig. 7. Cross-section of the elliptic grid around the IAD; outer boundary is far-field.
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detailed discussion on this topic, the reader is also referred to [23–26]. Nondegeneracy conditions for a hexahedral cell and
grid have been discussed in detail by Ushakova [23–25] and Azarenok [26].

As an example, a low speed turbulent flow calculation at a Reynolds number of 2 � 107 was carried out with the k� e
turbulence solver [27–29], and the corresponding pressure contours over the aeroshell are shown in Fig. 8. The flow solver
used in the present study was originally used in an earlier study [30].

Another grid calculation was carried out for the MSL disk-band-gap canopy, and the grid over the canopy geometry is
shown in Fig. 9. Again, the grid shown in Fig. 9 represents a single-block grid. The grid at the ‘‘vent” and the gaps is created
as if it was a solid surface. The presence of the vent and the gaps is simulated through the CFD boundary condition prescrip-
tion. There is an axis of singularity running through the center of the vent all the way from the upstream boundary to the
downstream boundary. Pressure contours over the canopy in low speed laminar flow are shown in Fig. 10.

Next, the IAD grid was used to calculate supersonic laminar flow at Mach number of 2 and Reynolds number of 5 � 105,
using a recently developed explicit high-order flow solver, EDLFLOW-F [31], which is fourth order accurate in time and sixth
order accurate in space. The temporal integration is achieved using Runge–Kutta method and the spatial integration is
Fig. 8. Axisymmetric pressure contours about the aeroshell in low speed turbulent flow, Re = 2 � 107.

Fig. 9. A continuous single-block grid over the MSL disk-band-gap canopy geometry.



Fig. 10. Pressure contours over the MSL canopy in low speed laminar flow.

Fig. 11. Pressure contours over the Tension Cone IAD for free stream M = 2 and Re = 5 � 105 (laminar flow).
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achieved using compact differencing scheme [32]. The solver, EDLFLOW-F, has been developed at NASA Ames recently to
study highly dynamic planetary Entry, Descent and Landing (EDL) flows. The shock capturing is based on hyperviscosity
approach [33]. An eighth order linear spatial filtering [34] is used to filter out the high frequency components of the solution,
and the geometric conservation law and conservative metrics [35] are used to preserve free stream flow in the far-field. The
CFL stability is enhanced by adding a sixth order dissipation designed for EDLFLOW-F [31], and the metrics are also differ-
enced with the same high-order stencil as the flow variables.

The tension cone IAD results in terms of steady state Mach number contours are shown in Fig. 11, where a crisp capturing
of the bow shock is shown. As shown in Fig. 11, conservative metrics [35] result in the capture of free stream flow upstream
of the bow shock smoothly. All the other regions of the flow, subsonic pocket between the bow shock and the IAD, sonic lines,
the expansion region and the perfect symmetric wake are captured with high fidelity. As mentioned before, a clustered sin-
gle-block 91 � 72 � 67 elliptic grid was used for this calculation, as shown in Fig. 7. The grid is fine enough to capture the
shock accurately. It may be noted here that the high fidelity of the CFD solution [31] shown in Fig. 11 refers to the high-order
temporal-spatial scheme used for the Navier–Stokes equations.



Fig. 12. A single-block 51 � 91 � 61 grid for the convex geometry.

Fig. 13. Three orthogonal surfaces (n = 26,g = 46,f = 31) slicing through the middle of the geometry.
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Finally, an example of internal grid generation was considered. The geometry for this application is analytically defined
and is shown in Fig. 12. The top zðfÞ boundary is convex and the 3D geometry is given by the following equation:
Z ¼ 0:75þ 0:25 sinðpð0:5� 2yÞÞ; �1 6 y < 0; 0 6 x 6 0:5:
This geometry represents a similar challenge for the elliptic grid generation method as the aeroshell in a wind-tunnel since
clustering occurs in two orthogonal directions, x(n) and z(f), and the boundary constraints need to be satisfied simulta-
neously at the x–z corners. Fig. 13 shows three orthogonal surfaces (n = 26, g = 46, f = 31) slicing somewhere through the
middle of this geometry. Neumann boundary conditions are used in the n and g directions. Boundary constraints are used
in the n directions well as in the f direction. It is worth noting that in the n direction, both the constraints and the Neumann
boundary conditions are prescribed. Dirichlet boundary conditions are enforced at the f boundaries. A single-block
51 � 91 � 61 grid was used for this geometry.

Detailed views of these orthogonal surface grids are shown individually in Fig. 14(a)–(c). Fig. 14(a) shows the n � f grid,
Fig. 14(b) shows the g � f grid, and Fig. 14(c) shows the g � n grid. The grids satisfy the smoothness requirement all over the
domain. The clustering requirements are met at the f = 61, n = 1 and n = 51 boundaries. As discussed before, the orthogonality
property is satisfied approximately. But, orthogonality, being a function of how far the solution is driven to convergence and
the initial rate of clustering, as discussed before, can be enforced reasonably satisfactorily for all practical purposes.



Fig. 14. Three surface grids corresponding to the orthogonal surfaces slicing through the middle of the convex geometry.
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5. Conclusions

A fully automated three-dimensional elliptic grid generation method has been developed and demonstrated for the three-
dimensional MSL aeroshell and canopy geometries as well as the tension cone IAD. The present method has also been dem-
onstrated for a three-dimensional convex geometry defined analytically. Clustered body-orthogonal grids for the MSL aero-
shell in external flow, aeroshell in a wind-tunnel, the canopy, the IAD and the convex geometry were generated
automatically without any user intervention to enforce the clustering properties. Representative low speed and supersonic
flows were simulated, using these grids. This makes the new fully automatic three-dimensional patented enhanced elliptic
grid generator, EEGG3D, a powerful tool for generation of volume grids around complex geometries, especially deforming
grids about deploying geometries such as MSL canopies and the Inflatable Aerodynamic Decelerators (IAD).
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